
てビームはターゲットから 1m の位置で直径約 26cm
に絞られる．治療照射野は，厚さ 3cm のタングステン・
銅合金の可変絞りによって，1m の位置で 4cm 角から
20cm 角まで，任意の長方形に設定できる．可変絞り
を追加することで，円形の照射野も設定できる．図 2
に示す前面の引込式ポインター，後面の着脱式ポイン
ターによって，X 線ビームの中心軸を表示する．X 線
が照射される皮膚面を照光する光学システムも備えて
いる．

患者は，床下に水平移動機構を備えた可動寝台上に横
臥させる．寝台の上面は，広い可動範囲 ( 縦方向 42 イ
ンチ ×  横方向 15 インチ ) をもつ水平スライド板には
まっており，さらに回転運動も可能で，回転治療時に
はモーターで駆動する．回転軸は通常，前面ポインター
の軸に一致する．治療室の床面全体が，中心レベルか
ら 2 フィート 6 インチ上下し，これによって患者を装
置に対して移動して，前面ポインターを皮膚面の治療
計画位置に一致させる．X 線照射ヘッドを回転させる
と自動的に床面が上下方向に，寝台の水平方向に移動
し，Flanders & Newbery の記載 (1950) のように，入
射点の障害とならないようにビーム方向が調整される．
この自動制御メカニズムの簡単な説明を最近報告した
(Technique, 1954)．寝台には，患者を保持する一般的
な傾斜止めとクランプがついている．このほか，2 つ
の特別な仕様がある．すなわち可動椅子 ( 図 19) と可
変中心ギャップ ( 図 2) である．後者により，X 線ビー
ムが垂直な場合でも，その方向を後面ポインター法で
チェックできる．

X 線ビーム角，床面の垂直位置，光学システムの照度
は，小型移動式操作板から行える ( 図 2)．

治療室は，厚さ 4 ～ 6 フィートのコンクリートで覆わ
れている．アクセスは間接通路を介し，その安全側に
制御卓が置かれた操作室がある ( 図 3)．この隣には，
コンクリート壁を貫通する直径 12 インチの空気トン
ネルがあり，治療中は，この中を通る潜望鏡システム
により患者を観察できる ( 図 3，図 4)．

制御卓はできる限り単純化してあり，通常の 200kVX
線治療装置と同程度に容易に操作できる．2 つのメイ
ンスイッチがあり，1 つは RF システム用，もう 1 つ
は電子銃用である．照射線量 ( 表面から 2cm 下の軟部
吸収線量 ) は，10rad ステップで 600rad まで設定でき，
設定量が照射されると自動的にスイッチが切れる．中
央の大きなまるいメーターが総線量を示している．線

医学研究審議会 8MeV 直線加速器の性能
The performance of the Medical Research Council 8 MeV linear accelerator

Newbery GR, Bewley BA.  Brit J Radiol 28:241-51,1955

1948 年，Fry らは初の進行波直線電子加速器の運
転に成功した．その後，軍需省との協力の下，医学研
究審議会 (Medical Research Council) は Metropolitan-
Vickers Electrical 社と臨床用直線加速器の契約を締結
した．

医学研究審議会の加速器は，1950 年末に初稼働し
1951 ～ 52 年に Metropolitan-Vickers 社の研究室で徹
底的な試験が行なわれた．1952 年に Hammersmith 病
院に設置され，1953 年 2 月に審議会に引き渡された．
技術的詳細については既に Miller(1953，1954) が，
設置の概要は Wood ＆ Newbery(1954) が報告してい
る．

1953 年 2 月，物理計測プログラムを開始し，1953
年 9 月以来，患者の治療を行なっている．

本稿の目的は，施設の詳細，物理計測の結果，装置運
用について報告することである．

装置のレイアウト

ロンドンの Hammersmith 病院に最近新築された医学
研究審議会棟における直線加速器施設のレイアウトを
図 1 に示す．施設は，操作室，治療室，設備室から成
り，これに隣接して待合室，診察室，治療計画室，事
務室がある．治療室と同じ寝台を備えた計測室があり，
診断 X 線装置，絞り，直線加速器と同様の光学系と前
面 / 後面のポインターを備えたガントリーがある．可
動範囲は治療室のものと同じで，これによって装置の
治療時間を占有することなく，実際の治療と同じ体位
でマーカーを付けたり X 線写真を撮影したりできる．

治療室を図 2 に示す．加速器は長さ 8 フィートを占め，
すべて天井から懸架されており，床面はフリーである．
高エネルギー電子ビームは，ターゲットに当たる前に
電磁石で 90 度偏向する．電磁石は X 線照射ヘッドに
取付けられており，120 度回転できる．これによって
X 線ビームの方向は，加速管の長軸に垂直な平面内で，
水平から上向き 15 度から垂直を越えて 15 度の範囲ま
で任意に設定できる．

電子が金ターゲットに衝突して発生した X 線ビーム
は，X 線照射ヘッド内のウラン / タングステン銅合金
製の円錐開口部によりコリメートされる．これによっ

* ハマースミス病院医学研究審議会放射線治療部会および物理研究室 
(Radiotherapeutic Research Unit of the Medical Research Council, and 
the Physics Department, Hammersmith Hospital, London, W.12）



位置(図1参照) 

垂直ビーム 水平ビーム

ファントム

無 有 無 有

A  治療室と廊下扉の間 0.01 0.02 0.01 0.01

B 通路，操作室側の端 0.12 0.15 0.16 0.33

C 通路，照射ヘッド線上 1.4 1.8 60 32

D 通路，治療室側の端 17 11 37 54

E ポンプ室入口 0.5 0.7 0.4 0.7
F ポンプ室，監視トンネル端 0.7 0.8 1.0 2.5

図 1. 最近ロンドンに完成したハマースミス病院医学研究審議会棟の直線加速器施設の平面図．最大線量率 0.3rad/ 週で運転時の
各所の最大線量率 (T) も合わせて示す（詳細は表Ⅰ）．1. 治療室，2. 治療寝台，3. 直線加速器，4. ポンプ装置，5. 潜望鏡システム , 6. 
床面および寝台電源，7. メンテナンス室，8. 技術者用制御卓，9. 放射線技師室，10. 放射線技師用制御卓，11. 診察室 , 12. 待合室，
13. 倉庫，14. 稼働床面に連結する通路

図 2（左）. 治療室．X 線照射ヘッド，可変絞り，前面 / 後面ポインター，
治療寝台，移動式制御卓が見える．

図 3（右）. 放射線技師用制御卓．監視窓のトンネルと潜望鏡システ
ムが見える．

表Ⅰ．最大許容線量率．T=2 × 10-6 rad/秒 (＝0.3 rad/週)．中心ビーム上ター
ゲットから 1m の距離で 100rad/ 分の場合．



の放射線量を最大許容値以下に低減するために必要と
される厚さよりも厚い．

直流増幅器，1/4 インチ厚黒鉛添加ポリエチレン壁
の 7L 電離箱によって，防護計測を行なった．最大線
量率を図 1 に示す．装置作動中にスタッフが立ち入る
場所はいずれも最大許容線量以下であることがわかる．
表Ⅰに，各所の垂直ビーム，水平ビームの線量率を示
す．この計測は，線量率 100rad/ 分，照射野 20cm ×
20cm で行なったものである．

さらに無遮蔽シンチレーションカウンター (EKCO 
N509 型，ヨウ化ナトリウム結晶，ターゲット面積
1.3cm2），および無遮蔽 GM4 ガイガーカウンター ( ター
ゲット面積 4cm2) でも計測した．装置の運転条件は同
一とし，水平ビームがワックスファントムに入射する
ようにした．操作室の端の観察窓近傍では，装置をオ
ンにするとカウントは 83cpm 増加した．シンチレー
ションカウンターでは 4,000cpm であった．加速器に
最も近い 1 階の研究室では，装置をオンにすると約
30cpm 増加した．2 階では 2cpm 増で，総カウントは
10 分間で 1,500 であった．この数字から，直線加速器
による真のカウント数は，95% の信頼度で 11cpm 以
下といえる．無遮蔽ガイガーカウンター ( ターゲット
面積 10cm2) による 1 階のカウントは，1.5cpm と見積
もられる．2 インチ厚鉛遮蔽は，少なくとも 3HVL( 半
価層 ) に相当することから，直線加速器によるカウン
トは設計基準を十分下回り，1 階，2 階のいずれの場
所でもガイガーカウンターによる計測に干渉しないと
考えられる．

量率，射出線量もメーターに表示さえる．総線量，線
量率の信号は，X 線照射ヘッド内の平行板電離箱から
取りだしている．射出線量の信号は，放射線技師がセッ
トする薄壁パースペクス (Perspex) 製電離箱から取り
出す．いずれの電離箱もそれぞれ直流増幅器を備えて
いる．制御卓と治療室の間には，通常のインターコム
が備えられている．

放射線防護計測

X 線照射ヘッドの遮蔽材質の厚さは，全方向の線量率
を主ビームの 0.2% まで低減するよう Flanders が設計
した (1949, 1951)．装置を主ビームの線量率 100rad/
分で作動させ，絞りを完全に閉鎖した状態で，ターゲッ
トから 1m の位置に置いた水ファントムの表面で，照
射ヘッド周囲の線量を計測した．ヘッド周囲をはエン
ベロープに包んだ X 線フィルムで覆い，小さな厚壁電
離箱をターゲットから 1m の位置で移動させた．この
結果，ほぼ全方向で，線量率は 0.2rad/ 分を超えない
ことが明らかとなった．しかし，線量率が 1rad/ 分と
なる小さな漏洩位置が 2 ヵ所発見された．これはいず
れも患者とは離れた位置で，問題にはならなかった．
漏洩放射線が積算線量に及ぼす影響については，あら
ためて報告する予定である．

医学研究審議会棟は，直線加速器を作動させても，隣
接研究室で少量の放射性同位元素の実験ができるよう
設計されている．この基準は，ターゲット面積 10cm2，
遮蔽鉛 2 インチ厚のガイガーカウンターの直線加速器
によるカウント増加が 2cpm を超えないものとしてい
る．これを達成するためのコンクリート壁は，操作室

図 4. 治療中に制御卓から患者を監視するための潜望鏡システム．



することの問題点をまとめておく．

まず，X 線の分布が照射ヘッドの角度に依存しないた
めには，電子ビームは回転軸に一致して磁石に入射す
る必要がある．電子ビームの位置は，ヘッドの角度に
よらず X 線分布が均一であると同時に，いずれの角度
でも一定の分布である必要がある．

次に，偏向磁石の電流は，電子ビームが固定コリメー
タのブロックの円錐孔の中心に入射するように制御す
る必要がある．さもないと多くの電子がコリメータの
背後でターゲットにあたり，その側での X 線強度が著
しく低下することになる ( 図 6)．照射ヘッド内の平行
板電離箱による計測値をもとに磁石の電流を調節して
最大 X 線強度が得られるようにすることにより，所定
の電子エネルギーに対して適切な設定を行なう．

最後に，磁石によって電子スペクトルが拡大するため，
これによる非対称を X 線ビーム内の変形フィルターで
補償しなくてはならない．

等線量図

パースペクス壁の 18cm 角立方体水ファントム内を
移動できる電離箱を使用して，等線量図を求めた．最
大電離は，深度 2cm 弱の位置で得られ，計測体積の中
心位置は前面から 9mm 以内に置くことができた．電
離箱はマグスリップ [ 訳注：magslip: 電磁コイルを使っ
て 2 つの回転子 ( モーター ) 間で角度を送受信するデ
バイス．セルシンモーター ] で駆動され，電離箱への
信号はほぼ同構造の遠隔制御装置の同型マグスリップ
から供給される．図 8 にこの遠隔制御装置を示すが，
詳細については別項を参照されたい (Bewley, 1954)．
これは一対の交差ワイヤをもち，その動きに電離箱が
追従する．交差ワイヤの下のランプとパラボラ鏡が，
上方のスリガラスのスクリーン ( 図には描かれていな
い ) に等倍像を投影する．スリガラスにグラフ用紙を
取付ければ，交差ワイヤの交点の陰影 ( 図中 X) が常に
電離箱の位置を示すので，計測値を直接プロットでき
る．電離電流は，Wyard(1950) が報告したバッテリー
駆動の直流増幅器で計測する．電離箱が中心軸上の
深部曲線ピーク値 ( 通常深度 2cm) の位置にある時を
100 として感度を較正することにより，計器の示度か
ら深部線量百分率を直読できる．この計測システムは
非常にフレキシブルで，満足なものである．

大部分の計測には，ゴム製Ｏリングにより防水した
パースペクス電離箱 ( 図 9) を使用した．空気容積は 5
× 2 × 2mm で，5mm の面をビーム端に平行とし，ビー
ムを横切る実効容積の幅は 2mm である．この方法で
得られた等線量図を図 10 ～ 13 に示す．

表面付近の線量は，2 つの方法で計測した．まず，前
面に 0.02mm 厚セロファン紙，その上にパースペクス
を置いた電離箱を使用した．次いで，図 9 に示すよう

ビームの中心化

電磁石，ターゲットを含む X 線照射ヘッド全体が加
速管の軸に垂直な面内で回転することから，ヘッドの
角度によらず焦点を固定するためには，電子線が正確
に回転軸に一致して電磁石に入射することが必要であ
る．焦点が移動すると，X 線ビーム断面の強度分布は
ヘッドの角度に依存するようになる．電子線を中心化
する（中心に集中させる）ためにこのヘッドの角度へ
の依存性を除去する目的で，25 分画電離箱を特別に設
計した．この電離箱は，パースペクス製で，直径 26
インチ厚さ 2mm のコイン型の空気層をもち，入射面
には黒鉛を塗布し，前壁の厚さは 2cm である．空気
層の前面は分極電位に接続し，下面は接地する．下面
は，直径 2mm の 25 ヵ所の領域が溝で絶縁されている．
この領域は，45 度間隔の 8 本の放射線上で径 6cm，
9cm，12cm の位置にならんでいる．中心部にも 1 ヵ
所絶縁域がある．これらの絶縁域は，それぞれ別の遮
蔽ケーブルで操作室のセレクタスイッチを介して，直
流増幅器につながっている．電離箱全体は X 線照射ヘッ
ドに取付けられ，空気層がターゲットから 102cm の
位置にある ( 図 5)．これによって，任意のヘッド角度
について，X 線ビーム軸に沿う強度分布を非常に迅速
に知ることができる．電子ビームの位置は，4 対の収
束コイルで変えることができ，電流を調整することに
よって，照射ヘッドの位置によらず強度分布の変動を
3% 以内におさえることができる．X 線ビームの垂直方
向から水平方向まで各位置における線量率の変化を表
Ⅱに示す．実際には中心化コイルは 2 対しか使用して
いない．

ビームの平坦化

電子ビームを中心化すると，X 線強度は，既知の高
エネルギー X 線生成極座標図の形通りにビーム中心
で最大となることがわかった．しかしビーム断面内の
強度分布は対称性ではない．最も考えられる原因を図
6 に示した．電子エネルギーのスペクトルは非対称で
(Miller 1953, 1954)，スペクトルのピークを超えてさ
らに偏向する低エネルギー電子のテール部分が存在す
る．この低エネルギー電子は，固定コリメータによっ
て一側が対側よりも多く遮蔽される．これら 2 つの効
果は，特別な変形円錐型アルミニウムフィルターを，
電離箱直上で X 線ビーム内に置くことにより除去でき
る．この形状を図 7 に示す．このフィルターの適切な
形状は，下記に示すように，単一電離箱を遠隔操作し
て X 線断面内の強度分布を計測することにより求めら
れる．フィルターは，小さな照射野でも十分平坦化さ
れるように，大きな照射野は過補償するように設計さ
れている．図 10 ～ 13 に示す等線量図により，どの程
度まで補償されるかがわかる．

ここで，ターゲット照射前に電子ビームを直角に偏向



角度
中心からの距離

6cm 9cm 12cm 0cm

0° 1.00 1.01 1.005

45° 0.99 1.005 1.015

90° 1.00 0.99 1.025

135° 0.995 1.00 1.02

180° 0.995 0.99 0.99

225° 0.995 1.005 0.975

270° 1.015 1.00 0.99

315° 1.015 0.995 1.00

中心 1.02

図 5. X 線照射ヘッドに取付けた 25 分画電離箱．X 線ビームの中心軸
に直交する平面内の X 線強度を迅速に計測できる．

表Ⅱ．ターゲットから 1m の距離における各所の垂直ビーム強度 / 水
平ビーム強度比．180 度方向は，電子加速方向．

図 6. 低エネルギー電子による X 線吸収の不均一

図 7.  X 線ビームを平坦化して非対称性を補償するためのアルミニウ
ムフィルターの形状．

図 8. 等線量図プロット遠隔装置．

図 9. 等線量図作成のための防水電離箱



と思われる低レベルの等線量線の膨らみが認められる．
このような電子は，1/16 インチ厚鉛で吸収でき，臨床
用途では，主ビーム外の領域を鉛遮蔽する必要がある
場合がある．さらに深部では，散乱線によるビーム外
の線量率増加がみられる．図 15 にはこれを示す．ビー
ム外の空中 (in the air) 線量，および水ファントムの深
度 2cm における強度を放射状距離に対してプロットし
たものである．空中線量の計測は，壁厚 2.25c の円筒
状ポリエチレンで覆った電離箱で行なった．曲線の差
は，ファントムからの散乱線の影響を示している．さ
らに，しぼりを完全に閉じた状態でこれを透過する放
射線が最下部の曲線である．10cm 照射野について，
フィルター，しぼり，しぼり開口部のコリメータなど
から散乱するかなりの量の硬 X 線が加わることがわか
る．照射野が大きくなると急速に増加するが，これ問
題は，特に積算線量への影響について後日詳報の予定
である．

水ファントムの等線量図は，図 16 のように X 線ビー
ムを斜入した場合についても計測した．深部線量率計
測では，ピーク以下の深部での吸収による線量低下が，
概ね逆二乗の法則に従うことがわかる．この結果，斜
位方向ではピーク以下の等量線が，表面の角度とビー
ムに直交する方向との中間に位置することになる．こ
れは治療計画に便利なルールである．ピーク以前では
通常，等量線は皮膚面に平行とみなされる．

治療計画の詳細については続報の予定であるが，図
17 は 2 つの照射野のみで得られる線量分布の例を示
す．これに楔型フィルターを併用して，さらに主要線
量の均一性が改善されることが期待される．

な前面 0.12mm 厚，空気容積が直径 5mm × 厚さ 2mm
の別のパースペクス電離箱を使用した．後者は垂直 X
線ビーム用で，遠隔操作のギアによって水ファントム
内を上下できる．電離箱が表面に近い位置にある場合，
電離電流が印加電圧の極性に軽度依存することがわ
かったため，平均値を使用した．

等線量図は，完全に対称ではない．非対称性は，偏
向磁石の電流に起因するが，一部は平坦化フィルター
の不完全さによるものである．25 分画電離箱の計測に
より，垂直面内の分布が水平面内とやや異なる事がわ
かったが，数 % 以下の非対称については放置とした．
図 11 ～ 13 に示す等線量図は，軸の両側の平均をとる
ことにより対称化している．臨床にはこのような等線
量図を使用したが，3% 以上の誤差はなかった．

異なる照射野の大きさに対する中心軸上の深部線量百
分率を表Ⅲに示す．照射野による差はほとんどないこ
とがわかる．

異なるターゲットからの距離に対する表面とピーク
間のビルドアップを計測したが，図 14 に示すように
その差はかなり小さかった．これは，Miller(1950)，
Howarth(1951) の報告とも一致する．小照射野の場合，
現在よりも半影を小さくできる追加しぼり機構を予定
している．図 12 から，10cm 照射野に対する半影は，
ピークレベルの 10 ～ 90% の等線量線の間で 1.5cm で
あることがわかる．

主ビーム外では，幾何学的に予想されるよりも大き
な線量率が計測されている．表面近傍では，おそらく
空気あるいはしぼりの表面からの反跳電子によるもの

深度
照射野の大きさ

4 × 4 6 × 6 8 × 8 10 ×10 12 ×12 15 ×15 20 × 20
0 10 11 13 15 17 20.5 24

2 mm 46 47 48 49 51 54 56
5 72 73 74 75 77 78 80

1 cm 92 92.5 92.5 93 93.5 94.5 95.5
2 100 100 100 100 100 100 100
3 97.5 97.5 97.5 97.5 97.5 97.5 97.5
4 92.5 93 93.5 94 94 94 94.5
5 88 88.5 89 89.5 90 90.5 90.5
6 83 84 85 85.5 86 86.5 86.5
7 79 80.5 81 82 82.5 83 83
8 75 76.5 77.5 78 79 79.5 80

10 67.5 69 70 71 72 72.5 73.5
12 60 62 63.5 64.5 65.5 66.5 67.5

  14 54 55.5 57 58.5 59.5 60.5 62
  16 48 49.5 51.5 52.5 54 55 56.5
  18 42.5 44.5 46 47.5 48.5 50 51.5
  20 38.5 40 41.5 43 44 45.5 47
  22 34.5 36 37.5 39 40 41.5 45
  25 29 30.5 32 33.5 34.5 36 37
  30 22 23.5 25 26.5 27.5 28.5 29.5

表Ⅲ . 8MeV 中心軸上の深部線量百分率．
ターゲット距離 1m．ナロービームの吸収計測から得られた特性：鉛の場合 μ＝ 0.52cm-1，1.33 cm HVL．水の場合 μ＝ 0.043cm-1，16.3 cm 
HVL．水の値から，実効量子エネルギーは 2.6MeV となる．



図 10. 水ファントムの等線量図 ( 照射野 20 × 20cm，ターゲット距離
1m，平坦化フィルターなし )

図 11. 等線量図 ( 照射野 6 × 6cm，ター
ゲット距離 1m，平坦化フィルター使用 )

図 12. 等線量図 ( 照射野 10 × 10cm，ター
ゲット距離 1m，平坦化フィルター使用 )

図 13. 等線量図 ( 照射野 20 × 20cm，ター
ゲット距離 1m，平坦化フィルター使用 )

図 14. 2 つの異なるターゲット距離におけるビルドアップ曲線．照射
野 8 × 8cm．電離箱の前面は，0.02mm 厚黒鉛添加セロファン．

図 15. 様々な状態における主ビーム外の線量率百分率．ターゲット距
離 102cm．

図 16. ファントム表面に 30 度の角度で斜入時の等線量図 ( 照射野 10
× 10cm)



臨床では，350 パルス / 秒，線量率 100rad/ 分とし
ている．これは内蔵安定装置により，± 2% の範囲に
収められる．さらに正確な計測については，± 1/2%
の精度が容易に得られる微調整器が安定装置に組込ま
れている．線量計の示度を，線量率計の示度と照射時
間の積と毎日比較してチェックしている．これによっ
て直流増幅器の性能が大きく変動していないことを確
認できる．さらに，少なくとも 1 ヵ月に 1 回，別の電
離箱でラジウムによる較正を行なっている．内蔵線量
計は，100rad 以上の領域で非常に線形性に優れており，
自動遮断機構は 2% 以内の精度で作動する．毎日の較
正で，数週間の出力変動は 3% を超えないことがわかっ
ている．

操作・運転経験

1953 年 9 月以来，装置はルチーンスケジュールで運
転している．ウォームアップに時間を要するフィラメ
ントと収束コイルは，毎日午前 7 時に自動的に電源が
入る．午前 9 時に技術者が装置の電源を入れ，RF 出力
と周波数，X 線出力，線量計と遮断回路の動作をチェッ
クする．これに問題がなければ，技術者は装置の制御
をメンテナンス室から放射線技師の制御卓に切替える．
その後技術者は他の仕事をしているが，オンコール状
態にある．装置の立ち上げ，チェックに要する時間は
約 10 分である．

1953 年 9 月から 12 月の 3 ヵ月で，約 50 名の患者
の治療を開始した．1954 年の 12 ヵ月間で，350 名の
治療を行なった．この 15 ヵ月間で，治療中の装置故
障のために治療が遅れることは数多くあったが，その
日に予定されている数名の患者を全く治療できなかっ
たのは 1 日だけである．治療に影響せず，治療後に修
復可能であった電気的，機械的故障も数多くあった．
このような故障は 1 号機では止むを得ないところであ

線量較正

患者に照射される線量は，照射ヘッド内の平行板電
離箱により制御卓の線量計に表示される．線量率計は，
線量率の概略値を示すのみである．線量計は，水ファ
ントムの表面をターゲットから 1m の位置に置いた状
態で，X 線ビーム上深度 2cm の位置における吸収値を
示すように較正されている．単位は rad (100erg/g) で
ある．この軸方向線量率は，照射野の大きさによって
多少変動する．図 18 に，この変動を電離箱の補正係
数として示す．4 × 4cm，20 × 20cm 照射野で 7% の
差があり，その約半分はファントム内の散乱線，残り
の半分がコリメータからの散乱線である．この照射野
による線量率の変動は，臨床的には無視しうるほど小
さく，較正は通常 8 × 8cm 照射野で行ない，すべての
照射野における線量計表示に使用される．

線量計の較正は，ベークライト黒鉛電離箱を直流増幅
器につないで行ない，別のコンデンサー型電離箱でも
確認した．電離箱を直径 10cm のリング状 40 × 5mg
ラジウム管 (Amersham 社放射線化学センターで較正 )
の中央に置いた時の電離電流と比較した．ラジウム管
は，散乱が最も少ないと考えられる物質で作った環状
固定具 (jig) の上に置いた．補助実験では，固定具，ラ
ジウム管からの散乱線は無視しうる程度で，固定具は
電離箱の大きさに対して十分大きなものとした．ラジ
ウム 1mg から 1cm の距離で 8.3r/ 時，水中で 93 erg/
g を 1r とする定義を使用した．この較正法は，最近他
施設で多くのメガボルト装置の較正に使用されている
もので，これらの施設の最新 NPL( 国立物理学研究所 )
値と比べて 3% の範囲に収まっている (1954 年 12 月 )．

また，線量計の較正は，実効容積と壁の材質が様々に
変更できる特別な電離箱で行なうようにしている．こ
れは，ラジウムによる較正とは独立なものである．

図 17．肺癌の治療における非対向 2 照射野の線量分布．皮膚，脊髄
の線量が低いことがわかる．

図 18. 異なる照射野に対する内蔵線量計の補正係数



地した 8MeV 直線加速器について述べた．X 線治療に
最適に使用できるような物理学的計測について解説し
た．この計測には，放射線防護，ビーム平坦化，出力
較正，等線量図がある．装置は通常，ターゲットから
表面まで 1m の位置で水ファントムの深度 2cm の位置
で一定の線量率 100rad/ 分で運転する．1953 年 9 月
から 1954 年 12 月の期間で 400 名の患者を治療した．
装置の運用について報告し，その結果は非常に満足な
ものであった．
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るが，次に述べるイグニトロンの問題を除けば，大き
な機械的，電気的トラブルがなかったことは特筆すべ
きである．

2MW マグネトロン (magnetron) の寿命はきわめて満
足すべきものである．この真空管は 2 本使用したが，
1 本は 1,500 時間以上，もう 1 本は 200 時間以上稼働
した．一方，イグニトロン (ignitron) はより大きな問
題を起こしたが，幸いなことにコストはマグネトロン
の 1/5 である．イグニトロンは，電流パルスを高圧電
源からパルス変換機を介してマグネトロンに送る水銀
整流管である．初期には，イグニトロンの寿命は非常
に短かく，50 時間以下で使用できなくなった．しかし
管電流 (striker current) を 150A から 250A に増加さ
せることにより平均寿命は 200 時間のオーダーまで延
長した．以来イグニトロンが焼損して装置が停止する
トラブルはほとんどない．

装置のメンテナンスは治療終了後ルチーンに行ない，
また土曜日の午前中にも行なっている．

治療設備は基本的にすべて満足なものであるが，いく
つか細かな機械的な改良が必要であった．治療寝台に
ついては，特に椅子が非常に便利であることがわかっ
た．図 19 に，肺癌の治療のために寝台にセットした
椅子を示す．照射野の設定に影響すること無くビーム
の方向を変えられるために，セットアップはかなり単
純化できる．
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要約

医学研究審議会がロンドンの Hammersmith 病院に接

図 19. 治療椅子による肺癌の治療．前面 / 後面ポインター，照射野を
示す照光システムが見える．


