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現在では，その生物学的作用および治療応用の可能性
について考えるに十分な量の中性子を得ることができ
る．物理学的研究により中性子の特徴的なふるまいに
関する知識が蓄積し，一定の生物学的作用を予測する
ことができ，少なくとも一般論としてこの新しい粒子
線の一定の治療応用可能性を考えることができる．中
性子が物質を透過し，原子核を貫通，破壊する能力は，
その基本的な特性と考えられており，核物理学の一部
の分野ではα線，β線，γ線と異なる重要性を持ち，
当然のことながら粒子放射線，量子放射線の様々な生
物学的応用にもこれが反映する

I. 中性子の特性とふるまい

中性子は，水素原子とほぼ同じ質量を持つ非荷電粒子
である．1932 年，ケンブリッジ大学キャベンディッ
シュ研究所の J. Chadwick 博士が発見し，ノーベル賞
が授与されている．中性子は通常，金属ベリリウムに
ラジウムあるいはラドンが放出するα線を衝突させる
か，セメントに電気的に高速に加速した重陽子を衝突
させて発生させる．中性子は粒子であるが，通常の物
質を透過し，非常に硬いγ線に類似している．中性子
の衝突，相互作用の対象は原子核であり，核外電子で
はない．従って，その物質中の飛程上に電離の痕跡を
残すことはなく，間隔をあけながら原子核と衝突する．
中性子が衝突した原子核は，( 電離 ) 反跳原子核として
はじき出されるか，あるいは中性子を捕獲して一時的
あるいは永続的に他の原子核に変換される．

中性子は電荷を持たないため，他の衝突粒子のように
核外電子の電場の影響を受けたり，原子核境界で制止
されることはなく，原子核内にほとんど抵抗なく直接
進入する [1]．ひとたび原子核内に入れば，原子核の平
衡を撹乱する確率が高い．撹乱の種類は，原子核の種類，
衝突する中性子の速度に依存する．遅速中性子は最も
効果的である．速度が非常に大きいと，中性子は単に
原子核を通過して何も起こさない．しかし中性子が停
止すると，原子核は直ちに壊変したり，あるいは他の
原子核に変換される．後者の場合，新たな原子核が安
定であれば，単に軽い原子核から重い原子核が生成さ
れ，通常は単位量子のγ線を放出する．新たな原子核
が不安定な場合はさらに壊変する．すなわち中性子に
よって放射能が誘導される．中性子が原子核に進入し

てこれらの過程のいずれが発生するかは，原子核の種
類と中性子の速度によって異なる．

現在のところ，中性子の照射によって 40 以上の放射
性元素が人工的に生成されている．1 つの元素から 2
つ以上の放射線元素が生成される場合もある．放射性
元素の半減期は数秒から約 14 日にわたる．壊変物質
は元素によって異なる特異エネルギーをもつβ線，γ
線を放出する．天然放射性元素は 3 つの重金属，すな
わちウラン，トリウム，アクチニウムとその系列元素
に限られているが ( ルビジウム，カリウム，サマリウ
ムの非常に微弱な放射性を例外として )，人工放射性元
素はほとんどの元素から誘導されている．

人工放射性元素の生物学的研究や放射線治療への利用
可能性は，既に多くの関心を集めており，この分野は
研究施設が設けられて実験が行われれば，ただちに開
拓されるであろうことは疑いのないところである．実
際，ある種の治療では人工放射性元素がラジウムやラ
ドンにとって替わることも十分考えられる．その主な
利点として，放射線の均一性，治療に好適な半減期，
壊変物質の無毒性などが挙げられる．しかし，このよ
うな元素を中性子の衝突によって ( 直接的あるいは間
接的に ) 生成する方法は，著しく非効率的である．1
個の放射性元素を生成するために必要な中性子の平均
衝突回数は 10 の 10 乗のオーダーである．従って，中
性子源の潜在的な生物学的作用は，それが有用か否か
は別として，同じ中性子源で生成される人工放射性物
質の作用よりも必然的に大きなものとなる．

II. 中性子線照射による生物学的作用

本稿の目的は，中性子の生物学的作用と応用可能性に
ついて述べることである．様々な元素が特徴的な中性
子吸収特性をもつことから，非常に重要な応用が発展
しうると考えている．遅速中性子が不均一な物体を通
過するとき，その吸収は，粒子あるいは量子放射線の
吸収，散乱の法則には従わない．逆に，ある種の元素
は中性子を非常に強力に吸収し，また別の元素はほと
んど吸収しない．さらに，一定の速度における吸収の
強弱は，( γ線，X 線のように ) 原子番号に依存せず，
その原子核構造の特徴によって決まる．例えばホウ素
( 原子量 10.82) は遅速中性子を同量の炭素 (12) の 90
倍も吸収する．カドミウム (112.41) は錫 (118.7) の
825 倍も吸収するが，錫の 1 原子当たりの吸収は炭素
と同程度である [2]．このような偶然性から，中性子の
生物学領域における非常に有望な応用が考えられるが，* Bartol Research Foundation of the Franklin Institute. Swarthmore, 
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の厚さの組織内における衝突数はかなり少なく，実際
に 1cm 以下の組織では，高速中性子が 2 回以上衝突す
る事象は一時近似的にはほとんど無視しうる．以上の
事実をもとに，水素の量，入射中性子の運動エネルギー，
水素の吸収 ( 散乱 ) 係数がわかれば，水素原子との衝
突によって一定の物質層内に付与されるエネルギー量
は相応の精度で計算しうる．このような計算は，実際
の吸収過程は非常に異なるが，吸収物質や入射放射線
の波長が既知の場合の X 線吸収，γ線吸収の計算に類
似している．しかし残念ながら，実際に多くの中性子
源から放出される粒子のエネルギーは非常に不均一で
ある．このような中性子源から均一な中性子線を得る
問題は，X 線管から単色 X 線を取り出す問題に類似し
ている．すなわち，フィルターによって透過性の低い
成分を除去あるいは低減するか，あるいは X 線の場合
は分光装置，中性子の場合は速度選択装置を使用する
かである．しかし後者は非常に非効率であり，出力が
非常に小さくても良い場合，あるいは入力が非常に大
きい場合以外は利用できない．

b. 選択的吸収効果

中性子の弾性衝突はここまでにして，次に水素よりも
はるかに吸収が大きないくつかの元素による吸収を考
える．前述のように，このような元素の強力な吸収能
は，遅速中性子の衝突による原子核変換を特に起こし
やすい，その特殊な原子核構造に由来するものである．
このような元素には，リチウム，ホウ素，イットリウ

これについては後述する．

a. 弾性衝突の効果

比較のため，2 つの同一の有機物をそれぞれγ線，不
均一なエネルギーをもつ中性子線で照射した場合，何
が起こるかを考える．前者の場合，吸収は原子当たり
の電子の数に比例する．従って，概ね原子番号に比例
する．このため，重い元素は軽い元素より多く吸収する．
吸収されたエネルギーによって電子が放出され，最終
的には熱として消失する．

生体を不均一なエネルギーをもつ中性子線で照射する
場合，エネルギーの吸収はこれとは全く異なり，中性
子を非常に多く吸収する原子がある場合を除けば，原
則として水素原子が吸収する．水素原子による「吸収」
は，ほとんどが散乱である．すなわち，中性子は水素
原子と弾性衝突 ( 非捕獲衝突，玉突き衝突 ) して，γ線
により放出される電子と異なり，短いが電離度の高い
経路を反跳する．1 個の中性子は，静止するまでに何
回も散乱しうる．水素による中性子の大きな吸収が起
こるのは，次の 2 つの場合である．生体内に非常に多
くの水素が存在する場合，および水素原子の衝突断面
積が他の原子に比較して大きい場合である(炭素，窒素，
酸素の遅速中性子に対する核断面積は，それぞれ水素
の 0.12 倍，0.32 倍，0.09 倍である )．ここで特に興
味深い点は，水素は生体内に均一に分布しているため
反跳現象によって吸収されるエネルギーが均一になる
ことで，これに対して，γ線，X 線を強く吸収する重
い元素は，骨その他の特殊な組織にかなり限局する．

ここでは，α線，β線，およびγ線によって放出され
る電子と比較して，中性子の生物学的作用を論じるこ
としかできない．高速中性子の主な作用は，組織内で
の水素原子の放出によるものである．水素原子による
単位飛程当たりの電離はα線の約 1/4 で，飛程は同じ
エネルギーをもつα線の約 4 倍である．同じく，水素
の単位飛程当たりの電離は，電子の 100 倍のオーダー
であり，その飛程は 1 量子のγ線から放出される概ね
同じエネルギーをもつ電子の 1％である．

α線 ( あるいは水素原子 ) が相応の厚さを持つ組織に
及ぼす生物学的作用に関する実験データは，残念なが
らおそらく存在しない．このような実験は非常に難し
いが，その理由は，重い粒子は，中性子によって生成
しない限り，動物や植物組織内に分布することが非常
に難しいある種の放射性物質からしか得られないため
である．

中性子が水素原子核に衝突する場合，その運動エネル
ギーの平均 63％が水素に移動する．従って，中性子が
連続して水素に衝突すると，運動エネルギーは非常に
急速に減少する ( 図 1)．高速中性子の連続衝突間の平
均距離は比較的大きい ( 数 cm のオーダー ) ので，通常 図 1. 中性子の衝突回数と運動エネルギーの関係．横軸：中性子と水

素の衝突回数．縦軸：衝突後の残存運動エネルギーの平均比率 (%)



様な方法で，X 線，γ線の選択的吸収も可能であるが，
強力な吸収物質は必然的に重い元素であり，これに対
して中性子の吸収物質には，表 1 に示すように非常に
小さな原子番号の元素が含まれている．

遅速中性子の選択的吸収は，いずれの場合も中性子
の衝突による吸収元素の核変換に関連するものと思わ
れる．これに関連して特に注意すべきは，物質中で中
性子の吸収によって放出されるエネルギーは，水素原
子との弾性衝突の場合を除いて，入射する中性子のエ
ネルギーではないという点である．ここで放出される
エネルギーは，衝突された原子の核エネルギーである．
中性子はあくまでも，エネルギーを放出する核変換を
開始するトリガーとして働くものである．これは通常
の意味でのトリガーとは異なり，吸収された原子核の
一部となる．中性子の捕獲は，核変換の基本であり，
遅速中性子が速い中性子よりも効率的である理由は明
らかである．中性子の核吸収は，γ線，X 線の吸収と
は異なる特徴的な現象である．

中性子の核吸収によって放出されるエネルギーの形態
は，吸収物質によって異なる．軽い元素，特にリチウ
ムやホウ素では，低エネルギーのα粒子が放出される．

ム，カドミウム，バリウム，イリジウム，水銀のほか，
いくつかの稀土類元素 ( サマリウム，ユウロピウム，
ガドリニウム，テルビウム，ジスプロシウム ) がある．
表１に，Dunning，Pegram，Fink，Mitchell らのデー
タに基づき [3]，ここで着目している様々な元素による
遅速中性子の吸収の程度を示す．表の上半は大部分の
生物組織を構成する元素，下半は吸収が特に大きい元
素である．比較のために鉛を追加してある．

ここですぐ分かることは，生体組織を遅速中性子で
照射された部位に，これを強力に吸収する元素が十分
にあれば，そこには周囲の組織よりも大きな中性子エ
ネルギーが付与されることである．このような元素は，
非常に少量でも強力に吸収する．一方，表の下半に挙
げた元素は，多くの生体組織では中性子の吸収につい
てもおそらく無視しうるほど少量である．しかしここ
で，重要な可能性が存在する．すなわち，電離エネル
ギーを多く付与したい部位に，注射その他の方法で中
性子を多く吸収する物質を投与する方法である．この
目的に利用する元素は，もちろん毒性のない形である
必要がある．中性子の吸収は純粋に原子の現象であり，
その吸収については化合物の種類は無関係である．同

表 1. 各種元素の中性子衝突断面積，吸収係数



は既に入手可能であり [6]，その他についても早晩明ら
かになるであろう．

(3) 様々な条件下における連続衝突間の平均飛程を知
るために，異なる物質，異なる速度の中性子の散乱に
ついてさらなる研究が必要である．この情報は，吸収
物質内の散乱により放出されるエネルギーの量と分布
を知り，中性子源をとり囲む適切な散乱装置あるいは
フィルターを設計する上で非常に重要である．

(4) 核変換の過程とエネルギー関係についてさらに研
究が必要である．ある場合には人工放射能が誘導され，
また別の場合には即時核変換が発生してα線，β線，
γ線が放出される．両者が同時に起こることもある [7]．
各元素について，どのような過程が発生するか，各過
程にどの同位元素が関係するか，壊変する元素から放
出される粒子の種類とエネルギー，これらの過程にお
ける中性子の速度の影響を決定する必要がある．

IV. 中性子の生物学および医学研究への応用例

生物学的研究や治療に，( 中性子による人工放射性元
素の利用ではなく ) 中性子を直接利用できる着想をこ
こに示す．このような応用は 2 つに大別される．すな
わち中性子と照射物体中の水素あるいはその他の原子
核との弾性衝突による「全体的効果」 ，および中性子
吸収能が大きい原子による核変換に伴う核エネルギー
を放出する，中性子の選択的吸収による「特異的局在
効果」 である．後者には，前述のように少量の中性子
高吸収物質を生体の特定の領域に導入して中性子を照
射するという興味深い可能性がある．

実験生物学の領域では，以下のような可能性がある．
(1) 生体 ( 動物あるいは植物 ) における中性子の全体的
効果の研究，例えばその細胞分裂速度への影響，(2) 中
性子による細菌の殺菌あるいは弱毒化，(3) 遅速中性子
照射下における高等動物の臓器，組織への特異的効果，
(4) 動物，植物における中性子による変異生成の効果．
著者は，このうち (4) が中性子の純粋生物学への応用
として最も興味深いと考えている．

医学研究の領域では，(1) 中性子の全体的あるいは選
択的吸収による癌細胞の死滅あるいは抑制．特に電離
エネルギーを放出すべき部位に少量の強力な中性子吸
収物質を導入する可能性 ( 例えばホウ素，リチウム，
ガドリニウム，金などの可溶性非毒性化合物を表在性
癌に注射し，遅速中性子を照射する )，(2) 遅速中性子
により病原細菌に対して破壊作用を及ぼす可能性．こ
れは医学的にも純粋生物学の立場からも，十分考慮に
値するものである．可能性は低いとはいえ，強力な中
性子吸収元素の非毒性化合物を感染巣に集中させ，中
性子照射によって細菌を死滅させることは考えられな
いことではない．

この分野の研究には，多くの研究者が長年にわたって

重い元素の場合は，( 我々が知る限り ) β線，γ線が生
成される．中性子の吸収と放出は同時の場合もある．
その他の場合，すなわち人工放射能が誘導される元素
では，元素の放射性壊変の法則に従い，吸収に続いて
放出が起こる．中性子吸収によって放出されるエネル
ギー量は，吸収される中性子の数 N と，1 個の中性子
の吸収により放出されるエネルギー e の積である．い
くつかの軽い元素については，相対的な概略値が得ら
れている [4]．その他の元素についても間もなく計測さ
れるであろう．放出されるエネルギー e は，元素や変
換の種類に応じて正負いずれの値もとる．天然放射性
物質，人工放射性物質いずれにおいても，核エネルギー
放出は当然のことながら外部刺激なしに起こる．中性
子による元素の瞬間的壊変は，( 本当にそれが瞬間的で
あるなら ) 半減期ゼロの放射能誘導と言っても間違い
ではない．

c. 中性子照射により期待される効果

中性子の作用から期待できる生物学的効果は，2 つに
分けられる．(a) 中性子の ( 特に水素原子との ) 弾性衝
突による組織全体に発生する効果，および (b) 高吸収
度の原子が ( 少量であっても ) 存在する局所に発生す
る効果．いずれの場合も，中性子照射による電離作用は，
γ線，X 線照射と同様に主に破壊的な作用であること
から，動植物における変異の誘発，癌組織など悪性細
胞の破壊に応用しうる．相補刺激の問題は，他の放射
線と同じくなお検討の必要がある．中性子の作用は他
の放射線と大きく異なっている．すなわち，ひとこと
で言えば，γ線は重い元素に吸収されるのに対して，
中性子は水素のような軽い元素に最も良く吸収される
ということである．水素による中性子の散乱は，短飛
程ではあるが強力な電離粒子を生成し，γ線が放出す
る電子は長飛程で電離力の弱い粒子を生成する．そし
てさらに，中性子はある種の元素により強力な選択的
吸収を受ける．これによって中性子自体からではなく，
吸収した原子から原子エネルギーが自発的に放出され
ることになる [5]．

III. 解決すべき物理学的問題

実際の中性子源からの中性子線の照射により物質から
放出されるエネルギーの量，形態，分布を正確に計算
できるためには，純粋な物理学的研究によって解決す
べき多くの問題がある．このような問題をいくつか挙
げる．

(1) 中性子線中の中性子の毎秒当たりの個数，その速
度分布を簡便かつ十分な精度で計測する手法の開発

(2) 吸収物質による中性子の「吸収」は 2 つに分けら
れる．すなわち原子核吸収 ( 真の吸収 ) と散乱である．
異なる元素，異なる中性子エネルギーについて，両者
の比を求める必要がある．これに関するデータの一部



性子 1 個となる [10]．最近の推測では，Rn-Be からさ
らに多くの中性子が得られる．Jaeckel は Rn 1Ci のと
き，中性子の生成は 1,000 万 / 秒 /Ci としている [11]．
Paneth，Loleit によれば，300 万 / 秒 /Ci である [12]．
この場合の効率は，α粒子 1 ～ 3 万個につき中性子 1
個となる．

Ra-Be 中性子源からのγ線は，必要に応じて厚さ数
cm の鉛でフィルターすることにより，大幅に低減でき
る．鉛は中性子に対して非常に透過性であるため ( 表
1)，中性子線の強度に影響することはない．逆に中性
子線の強度は，数 cm のパラフィン ( 中性子の減速用 )，
ホウ素あるいはカドミウム箔 ( 遅速中性子の吸収用 )
で順にフィルターすることにより，γ線を失うことな
く大きく低減できる．パラフィンあるいはその他の水
素に富む物質を使用しなければ，中性子を有意に吸収
することはできない．その初速は非常に大きいため，
物質を通過する際の吸収は既知の最も硬いγ線よりも
さらに小さい．従って，Ra-Be，Rn-Be 中性子源は，中
性子をフィルターせずともγ線源として利用できる．
この種の線源として現在最も強力なものは，Paneth, 
Loleit が報告したラドン 2,200mCi とベリリウムの組
合わせである [13]．

(2) ベリリウムに硬γ線を照射する方法

1934 年，Szilard，Chalmers[14] は， ラ ジ ウ ム や ラ
ドンが放出する硬いγ線により，ベリリウムが壊変
すると同時に，Chadwick，Goldhaber が予測した通
り，中性子が放出されることを発見した．さらに近年，
Chadwick，Goldhaber[15] はこの現象を追求し，その
計測から，いくつかの中性子源から放出される中性子
数を計算できるようになった．ベリリウム原子核の面
積を 10-28cm2，この光壊変現象におけるラジウム 1.0g
あ る い は ラ ド ン 1.0Ci の エ ネ ル ギ ー を 1.7 × 106V，
1.14 × 1010/ 秒とすると，厚さ 10cm の固体ベリリウ
ム (7.8kg) に囲まれたラジウム 1g あるいはラドン 1Ci
は，90 万個 / 秒の中性子を放出する．これは，前述
の (1) と同程度である．フィラデルフィアの American 
Oncologic Hospital の協力を得て，Dr. L. H. Rumbauch
と著者は，ラジウム 4g のγ線の一部を金属ベリリウ
ム 500g を通過させて得られる約 20 万 / 秒の光中性子
源により一連の実験を行っている．もちろん (1) と (2)
を組合わせることもできる．

硬いγ線によるベリリウム，重水素の光壊変による中
性子の生成は，高圧電源による高エネルギーγ線の発
生という既知の，しかし未開拓の可能性があることか
ら，興味深い問題である．170 ～ 350 万 V の管球にお
いて，1μA の電流は，γ線あるいは X 線に変換されれ
ば，ベリリウムの光壊変によって毎秒 50 億個の中性
子を生成できる．この中性子線は，少なくともラジウ
ム 200g から得られる中性子に匹敵する．最も容易に

専念する必要があると思われる．しかし，それによっ
て 1 つの疾患を撲滅できたり，あるいは疾患の生物学
的病態をより良く理解できるようになって治療法への
道がひらけるなら，その努力に値するものである．

V. 中性子線の発生

「中性子の発生」とは，原子核から中性子を解放する
ことを意味する．α粒子と同じく，中性子は原子核内
にのみ存在し，これを利用するにはそこから取り出す
必要がある．原子核から中性子を取り除くと，α粒子
の自然放出の場合と同じように核壊変が起きる．しか
し，23 の放射性元素と同位元素から放出されるα粒子
と異なるのは，中性子を自然に放出する元素は知られ
ておらず，高エネルギーの粒子や量子を衝突させて放
出する必要があることである [8]．この事実から，高密
度の中性子線の発生は，これまで開発されたいかなる
方法をもっても，困難あるいは高価なものとなる．

中性子は，原子核をα粒子 ( ヘリウム原子核 )，重陽
子 ( 重水素核 )，γ線により壊変させることにより得ら
れる．いずれの場合も，入射する物体は原子核に進入
して原子核内に中性子を保持している結合エネルギー
に打ち勝つに十分なエネルギーを有する必要がある．
γ線の場合は，原子核に進入する必要がないことから，
結合エネルギーだけが問題となる．

中性子を発生させるオリジナルな方法，すなわちポ
ロニウムからのα粒子をベリリウムに照射する方法は，
他の方法にくらべて中性子の発生量が少なく，大量の
ポロニウムを用意することが難しいことからここでは
考慮しない．毎秒 100 万個以上の中性子を発生させう
る 3 つの方法を中性子発生可能量の少ない順に考えて
みる．

(1) ラジウムあるいはラドンから得られるα粒子をベリ
リウムに照射する方法．

この方法では，密封容器内で金属ベリリウム粉末とラ
ジウムあるいはラドンを混合する．もちろん Ra-Be 中
性子源は一定であるが，Rn-Be 中性子源はラドンガス
と同じ速度で減少する．ベリリウムをラドンやラジウ
ムあるいはラドンと混ぜても，通常のγ線利用に支障
を来たすことはない．中性子は，他には利用されない
α粒子によって生成され，ベリリウム ( 原子量 9.02)
によるγ線の吸収は非常に小さい ( μ = 0.074/cm Be)
からである．単にγ線の放出に中性子の放出が加わる
だけである．

Fermi，Arnaldi，D'Agostino，Rasetti，Segrè[9] に よ
ると  ，ベリリウムガスとラドン 1Ci から，毎秒およ
そ 100 万個の中性子が発生する．これによれば，ラジ
ウム 1g とベリリウムで，毎秒 130 万個の中性子が得
られる．この方法の効率は，α粒子 10 万個あたり中



(5) E. O. Lawrence の発明になるサイクロトロン．こ
の独創的かつ非常に成功をおさめた装置は，2 つの電
極と，電界に直交する強力な磁界だけで動作する．(4)
と同様，電極は高周波発振装置に接続されている．わ
ずか 25,000V のピーク電圧で，600 万 V 以上の重水
素エネルギーが得られている．現状ではこの装置によ
り，核変換に関して最も多くの情報が得られており，
他の高電圧発生装置にくらべて多くの人工放射性物質
の生成に利用されている．

(6) Beams による連続加速装置．原理は (4) に類似す
るが，発振回路ではなく「トロリー」内の電気パルス
伝送を利用している．他の装置より新しく，実験段階
にある．

紙面の制約でこれらの装置の詳細について述べること
はできないが，中性子生成における高電圧発生装置の
ラジウム，メソトリウムに対する利点は，大出力が可
能な点にある．その理由は，α粒子のかわりに陽電子
を利用していること，非常に多くのイオンを利用して
いること，陽電子は自然発生するα粒子をはるかに凌
ぐ高速に人工的に加速できることにある．欠点は，装
置の建設に費用がかかること，綿密な設計が必要であ
ること，専門のオペレーターが常に必要なことである．

VI. 中性子の取扱い

(a) 防護

中性子の身体的有害作用 (「中性子火傷」ともいえる )
に対する取扱者の防護法は，γ線，X 線の場合と同様
である．中性子の防護吸収材は，同程度の放射性物質
からのγ線の防護にくらべて厚いことが求められる．
これは，いずれの元素についても高速中性子の吸収係
数が小さいためである．

中性子の吸収は，2 つの連続ステップから成る．まず
散乱による減速，そして原子核吸収による遅速中性子
の除去である．前者は，パラフィン，水，油など，水
素が豊富な物質内に中性子を通過させることで最も良
く達成できる．後者は，ホウ素，カドミウム，リチウ
ムあるいはこれらの化合物が最も効率的かつ便利であ
る．深さ 2-3 フィートのホウ素水溶液は，このいずれ
にも良く機能する．

中性子の生成，フィルターにγ線その他の透過光線も
絡む場合は，そのような光線の防護も必要である．例
えば，Ra-Be，Rn-Be 中性子源を使用する場合は，ラジ
ウム，ラドンのγ線に対する一般的な防御が必要であ
る．これに加えて，これらの線源による中性子の生成
にあたっては，( 比較的弱い ) 非常に透過性の高いγ線
放出を伴う ( その平均エネルギーは，Ra C [124Bi の旧
称 ] の最大エネルギー 219 万 V に対して 600 万 V の
オーダーと推測される）．高電圧発生装置による中性

壊変するベリリウムでもその核結合エネルギーは 130
～ 200 万 V とされ，このため光中性子を生成するには
非常に硬いγ線が必要がある．一方，ラジウム，ラド
ンが放出するγ線のうち，核壊変に十分な硬さのもの
は約 16％にすぎない．

(3) 様々な元素に高電圧発生装置により生成した高速重
水素を照射する方法

荷電粒子を高速に加速する高電圧発生装置の開発は，
強力な中性子線の生成に大きな展望をもたらした．近
いうちにこのような装置が，これまで採掘されたすべ
てのラジウムによる Ra-Be，Rn-Be 中性子源を合わせ
たものよりもさらに高速に中性子を生成できるように
なると考えることには十分な理由がある．現在のとこ
ろ，高電圧発生装置は実験開発段階にあるが，中性子
を直接あるいは間接に利用する多くの重要な物理学実
験を可能としており，このような装置の将来の発展の
道が示されている．

中性子は，高電圧発生装置で水素，ヘリウム，重水素
など様々な元素のイオンを照射することによって生成
されるが，最も効果的なものは，重水素イオン ( 重陽子 )
である，ここではこれについてのみ検討する．

中性子の発生効率は，イオンの電圧とともに急速に上
昇するため，200 万 V 以上の電圧が望ましい．このよ
うな電圧の発生に伴う困難は，様々方法で解決されて
いる．そのすべての可能性が尽されたわけではないの
で，「最良」の方法を示すことはできない．ある方法は
電圧，イオン電流の大きさの観点から，また別の方法
は出力の定常性，均一性の観点から開発されている．

高電圧発生装置は，便宜的に 2 種類に大別できる．(A) 
1 ステップで最大電圧を発生するもの，(B) イオンの経
路に沿って低い加速電圧を繰返し印加してイオンを加
速することにより「出力電圧」を得るもの．第 1 のグルー
プとしては，次のものがある．

(1) 静電発生器．特に Van de Graaf & Bramhall, Tuve, 
Dahl, Hafstad らによる Van de Graaf 装置．

(2) 高電圧変圧器．特に Crane & Lauritsen による，
一連の変圧器をカスケードに接続する方法．

(3) 直 列 － 並 列 コ ン デ ン サ ー 発 電 機．Cockroft & 
Walton が発明した，一連の高電圧コンデンサーを並列
に充電し，直列に放電する装置 ( この装置は，初めて
研究室レベルで核壊変を起こすのに十分なイオンの加
速を達成した方法である )．

第 2 のグループには，次のものがある．

(4) 高周波発振真空管に連結した中空シリンダー内で
連続的にイオンを加速する方法．Lawrence & Sloan が
開発したもので，その出力電圧はピーク電圧に加速管
対の数を掛けた値となる．



の中性子には比較的適しているが，原子核粒子の電離
計測にまつわる誤差に加え，水素粒子の放出確率の中
性子速度への依存性による不確実性がある．遅速中性
子の計測には不適である．

(b) 薄い電離箱と高感度線形増幅機の組合わせ
個々の電離粒子の通過を記録し，核粒子の飛程 1cm

あたりの電離を計測し，これから粒子のエネルギーを
求める．中性子の研究には非常に有用であるが，異な
る速度の中性子の検出効率に不確実性を伴う．電離箱
をリチウムあるいはホウ素で内張りすれば遅速中性子
の計測に，パラフィンを使えば高速中性子の計測に利
用できるが，効率は異なる．

(c) 中性子による誘導される人工放射能の利用
適当な「検出元素」 (detector element) を中性子線に

曝露し，その放射能壊変による電離を Geiger-Muller カ
ウンターあるいは電離箱で計測する．検出元素は，異
なる速度の中性子に非常に選択的に反応し，低エネル
ギーないし比較的低エネルギーの中性子に最も高感度
である．

(d) 写真乾板の原子核崩壊
特殊な方法により，軽い元素の崩壊によるα粒子，水

素粒子の飛程をある種の写真乾板に記録できる．この
方法の欠点は，比較的広範囲を顕微鏡で観察する必要
があるため時間がかかること，ならびに比較的遅い中
性子に選択性があることである．記録はもちろん永久
的である．今後確実にさらに発展すると思われる．

(e) Wilson 霧箱
この装置では，原子核壊変による崩壊産物の飛程を写

真に撮影し，粒子の種類，エネルギーを決定する．線
源は比較的弱い必要があり，強力なγ線がある場合は
使用不能である．

(f) 化学的計測．
近年 Hopwood & Phillips[18] は，コロイドに対する

化学作用，あるいは単純な化学反応の促進により中性
子照射の累積効果を測定する試みを報告している．い
ずれの場合も，その効果はγ線の場合に類似している
という．同様の方法がさらに開発されるであろう．

不均一な中性子線に強力なフィルターをかけて，低エ
ネルギー粒子を除去できる．厚さ数 mm のカドミウム，
ホウ素，リチウムなどのフィルターにより，遅速中性
子の大部分を，高速中性子の比率にほとんど影響する
ことなく除去しうる．しかしフィルターについてはな
お研究の余地がある．例えば最近，遅速中性子を著し
く吸収するカドミウムが，金に放射能を誘発しうる遅
速中性子を発生することが見いだされた [19]．同様の
現象は，銀，インジウムでも発見されており，強力に
吸収される中性子には，元素によって異なる最小エネ

子源は通常γ線を放出する．Crane, Celsasso, Fowler, 
Lauristen[16] らは，100 万 V 以下の高速陽子の照射に
より，リチウムから 11 種類の波長のγ線が放出され
ることを発見している．この中で最も硬いγ線は，エ
ネルギー 1,600 万 V のものであった．ある種の元素に
よる中性子の吸収もγ線放出を伴う．例えば，遅速中
性子がカドミウムに吸収されると 1,000 万 V と推定さ
れるエネルギーを放出する [17]．吸収－放出現象をお
こす量子の数は，おそらく量子吸収過程で吸収される
中性子の数に等しい．そのエネルギーは非常に大きい
ことから，生理学的作用の危険は最小限にとどまる．

強い中性子線に曝露される人には，頻繁な血球数検査
を行うことによりγ線の過剰照射，そしておそらく中
性子についてもこれを検出することができるが，中性
子についてはまだ実験で証明されていない．最近の報
告では，カリフォルニアのサイクロトロンの近傍で働
いていた人が，遅速中性子を吸収して体内組織に人工
放射性物質が生成され，非常に強い放射性を帯びたと
いう．このような放射能の測定により，( 速中性子で
はなく ) 遅速中性子への曝露の程度を，ただちに容易
に決定できるはずである．この方法の変法として，銀，
ロジウム，バナジウム，臭素，ヨウ素など ( 遅速中性
子によって人工放射能が誘導される元素 ) をポケット
いれて持ち運ぶことにより，ある時点での遅速中性子
への曝露を計測することが考えられる．高速中性子の
曝露の測定は容易ではない．

(b) 計測とフィルター

中性子線の基本的特性は，第 1 に単位時間に単位面
積を通過する個数，第 2 に速度，第 3 に飛程の方向で
ある．最初の 2 つによって，中性子線のエネルギー流
量 (flux) が決まる．第 3 は，線源の面積が広い場合，
中性子線が広い範囲の散乱物質を通過する場合に，そ
の影響を計算する上で重要となる．

残念ながら，これらの特性の計測は難しいのが現状で
ある．線源によらず毎秒あたり放出される中性子の個
数は，せいぜい 2 倍のオーダーの精度でしか求められ
ない．速度の分布は，個数よりもさらに不確実である．
特に中性子のエネルギーが不均一な場合，その実施，
解釈に誤差のない実験を計画することは容易ではない．
このような困難の主たる原因は，中性子の検出，計測
効率が，その速度によって大きく変動すること，そし
てこの変動範囲が計測法によって異なることにある．
一般に，中性子線のエネルギー流量の計測にあたって
は，それが概算であっても，複数の計測法を用いるこ
とが必要である．6 つの中性子線計測法を挙げる．

(a) パラフィンを張った電離箱
中性子によりパラフィンから放出される水素粒子によ

る電離の総和が計測される．この方法は高エネルギー



【註】

1. より正確には，中性子場は他の原子場と，非常に近い距離でのみ相
互作用する．その「半径」は 10-13cm のオーダーで，これに対し原子
の半径は 5-19 × 10-9cm，原子核の半径は 1-10 × 10-13cm である．

2, 3. Dunning, Pegram, Fink, Mitchell. Interactions of neutrons with 
matter. Phys Rev 48:256,1935
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ルギーおよび最大エネルギーが存在することが示唆さ
れる．言い換えれば，遅過ぎる中性子，速過ぎる中性
子は，原子核に捕獲されない可能性がある．この問題
に関して更なる知見が加われば，フィルター方法も改
良されるであろう．

Rn-Be 線源からの中性子の減速に最適なパラフィンの
厚さは，遅速中性子の検出にリチウムの崩壊を利用す
る場合約 10cm である [2]．初エネルギーがさらに低い
中性子では，パラフィンの最適厚は 10cm 以下である．
これより高いエネルギーの中性子の場合は，明らかに
10cm 以上となる．様々な最大エネルギー，エネルギー
分布をもつ中性子線源に対する最適な散乱物質の決定
はなお今後の課題である．中性子と水素原子の衝突は，
水素自体が遅速中性子の一部を吸収し，これに伴って
γ線が放出されるため多少複雑である ( この吸収は，
中性子と水素原子核が直接合体して重水素を形成する
ことによる )．中性子が水素に最も多く吸収される場合
の吸収量とエネルギーは，まだ正確には求められてい
ない．

補遺

本稿執筆後，高速中性子の生物学的作用に関する重
要な論文が 2 編発表された．その 1 つでは，Lawrence 
& Lawrence[20] が，サイクロトロン ( カリフォルニア
大学 ) からの中性子線量とラットの血液への影響の関
係を，非常に硬い X 線 (90 万 V) と比較したものであ
る．その効果は類似しており，リンパ球の減少が認め
られたが，同等の作用をもたらす中性子線量は X 線量
のわずか 1/10 で，この作用について高速中性子は X
線の 10 倍の効率をもつことが示唆された．もう 1 編
は Zirkle & Aebersold[21] によるもので，一定の中性
子線と硬 X 線による小麦未生の根の生長速度遅延を測
定する実験である．それによると高速中性子線 1R が，
X 線の 20R に相当する．これらの報告の装置，計測法は，
Lawrence & Lawrence の論文と同じであり，2 つの実
験結果を直接比較しうることは重要である．このこと
から，異なる生体に対する同量の中性子線の生物学的
作用は，生体，生物学的作用種類によってかなり異な
ると結論できる．


